Reg. No. : \square

Question Paper Code : 63254

B.E./B.Tech. DEGREE EXAMINATION, NOV̇EMBER/DECEMBER 2016.

First Semester
Civil Engineering
MA 1101 - MATHEMATICS - I
(Common to All Branches)
(Regulations 2008)

Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART.A - }(10 \times 2=20 \mathrm{marks})
$$

1. Find the sum of the Eigen values of the inverse of the matrix $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 8 & 4 & 0 \\ 6 & 2 & 5\end{array}\right]$.
2. Find the characteristic equation of the matrix $\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$.
3. ' If $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosines of any line prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2}, \gamma=2$.
4. Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}+6 x-2 y+4 z+5=0$.
5. Find the radius of curvature of the parabola $x^{2}=4 a y$ at $x=2 a$.
6. If the centre of curvature of a curve at a variable point ' θ ' is $\left(a \log \left(\cot \frac{\theta}{2}\right), \frac{a}{\sin \theta}\right)$ find the evolute.
7. State Euler's theorem for homogeneous functions.
8. If $u=f(x, y)$ then prove that $\frac{\partial u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y}{d x}$.
9. Find the particular integral of $\left(D^{2}-2 D\right) y=e^{x} \cos x$.
10. Solve $\left(D^{2}-2 D+1\right)^{2} y=0$

PART B - $(5 \times 16=80$ marks $)$
11. (a) (i) Find all the Eigen values and Eigen Vectors of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right]
$$

(ii) Diagonalise the matrix $A=\left[\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right]$ by similarity transformation.

> Or
(b) (i) Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$ by using Cayley Hamilton theorem.
(ii) Obtain an orthogonal transformation, which will transform the quadratic form $2 x_{1}^{2}+6 x_{2}^{2}+2 x_{3}^{2}+8 x_{1} x_{3}$ into a canonical form.
12. (a) (i) Find the equation of the image of $\frac{x-1}{3}=\frac{y-3}{5}=\frac{z-4}{2}$ in the plane

$$
\begin{equation*}
2 x-y+z+3=0 \tag{8}
\end{equation*}
$$

(ii) Find the length of the shortest distance between the pair lines $\frac{x-1}{1}=\frac{y-2}{-2}=\frac{z-3}{3}$ and $\frac{x+1}{2}=\frac{y}{-1}=\frac{z-1}{3}$.

Or

(b) (i) Find the equation of tangent plane of the sphere $x^{2}+y^{2}+z^{2}-4 x-2 y-\theta z+5=0$ which are parallel to the plane $x+4 y+8 z=0$. Find also their point of contract.
(ii) Find the equation of the cone whose vertex is $(1,2,3)$ and guiding curve is the circle $x^{2}+y^{2}+z^{2}=4, x+y+z=1$.
13. (a) (i) Find the radius of curvature at ' t ' on $x=e^{t} \cos t, y=e^{t} \sin t$.
(ii) Find the evolute of the parabola $y^{2}=4 a x$.

Or

(b) (i) Find the circle of curvature for the curve $y=3 x^{3}+2 x^{2}-3$ at the point $(0,-3)$.
(ii) Find the envelope of $\frac{x}{a}+\frac{y}{b}=1$, where the parameters a, b are related by $a^{2}+b^{2}=c^{2}$, where c is known.
14. (a) (i) Verify the Euler's theorem for $u=e^{x^{2}+y^{2}}$.

2 (ii) Find the maximum and minimum values of $\sin x \sin y \sin (x+y)$.

Or

(b) (i) If $z=f(x, y)$, where $x=u^{2}-v^{2}, y=2 u v$, prove that - $\left(\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}\right)=4\left(u^{2}+v^{2}\right)\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right)$.
(ii) Expand $x^{4}+x^{2} y^{2}-y^{\dot{4}}$ as a Taylor series expansion about the point $(1,1)$ upto third order terms.
15. (a) (i) Using method of variation of parameters solve the following differential equation $y^{\prime \prime}-2 y^{\prime}+y=x e^{x}$.
(ii) Solve $\left[(x+1)^{2} D^{2}+(x+1) D+1\right] y=(x+1)^{3} \log (x+1)$.
Or
(b) (i) Solve the system of differential equations $\frac{d x}{d t}+5 x-2 y=t$; $\frac{d y}{d t}+2 x+y=0$.
(ii) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=x^{2} \sin (\log x)$.

